OFFSET
0,3
COMMENTS
See the array A128502 without zeros and falling powers. This is the main entry.
The coefficient triangle for Chebyshev S polynomials is given in A049310.
The self-convolution (or first convolution) of the S polynomials is S1(n, x) := Sum_{k=0..n} S(k, x)*S(n-k, x), n >= 0, and S1(n, x) = Sum_{m=0..n} T(n, m)*x^m.
FORMULA
T(n, m) = [x^m] S1(n, x), with the first convolution S1 of the Chebyshev S polynomials. See a comment above.
T(n, m) = 0 if n-m is odd and T(n, m) = (-1)^((n-m)/2)*((n-m)/2 + 1)*binomial(n - (n-m)/2 +1, (n-m)/2 +1) = (-1)^((n-m)/2)*(n - (n-m)/2 + 1)* binomial(n - (n-m)/2, (n-m)/2) if n-m is even.
O.g.f. of {S1(n, x)}_{n >= 0} is G1(z,x) = (1/(1 - x*z + z^2))^2.
EXAMPLE
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
0: 1
1: 0 2
2: -2 0 3
3: 0 -6 0 4
4: 3 0 -12 0 5
5: 0 12 0 -20 0 6
6: -4 0 30 0 -30 0 7
7: 0 -20 0 60 0 -42 0 8
8: 5 0 -60 0 105 0 -56 0 9
9: 0 30 0 -140 0 168 0 -72 0 10
10: -6 0 105 0 -280 0 252 0 -90 0 11
11: 0 -42 0 280 0 -504 0 360 0 -110 0 12
12: 7 0 -168 0 630 0 -840 0 495 0 -132 0 13
...
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Nov 07 2017
STATUS
approved