login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128502
Convolution array for Chebyshev's S(n,x)=U(n,x/2) polynomials.
4
1, 2, 3, -2, 4, -6, 5, -12, 3, 6, -20, 12, 7, -30, 30, -4, 8, -42, 60, -20, 9, -56, 105, -60, 5, 10, -72, 168, -140, 30, 11, -90, 252, -280, 105, -6, 12, -110, 360, -504, 280, -42, 13, -132, 495, -840, 630, -168, 7, 14, -156, 660, -1320, 1260, -504, 56, 15, -182, 858, -1980, 2310, -1260, 252, -8, 16, -210, 1092
OFFSET
0,2
COMMENTS
S1(n,x):=sum(S(n-k,x)*S(k,x),k=0..n)= sum(a(n,m)*x^(n-2*m),m=0..floor(n/2)).
The unsigned column sequences, m>=0, divided by (m+1) give Pascal triangle column sequences for m+1.
G.f. for column m sequence: ((-1)^m)*(m+1)*(x^(2*m))/(1-x)^(m+2), m>=0.
Row polynomials P1(n,x):= sum(a(n,m)*x^m,m=0..floor(n/2)) (increasing powers of x).
Written as a triangle with increasing powers of x this is A294519. - Wolfdieter Lang, Nov 12 2017
FORMULA
a(n,m)=binomial(n-m,m)*(n+1-m)*(-1)^m, m=0..floor(n/2), n>=0.
a(n,m)=binomial(n+1-m,m+1)*(m+1)*(-1)^m, m=0..floor(n/2), n>=0.
G.f. for S1(n,x): 1/(1-x*z+z^2)^2.
G.f. for P1(n,x): 1/(1-z+x*z^2)^2.
EXAMPLE
[1];[2];[3,-2],[4,-6];[5,-12,3];[6,-20,12];[7,-30,30,-4];[8,-42,60,-20];...
n=4: [5,-12,3] stands for the polynomial S1(4,x) = 5*x^4-12*x^2+3 = 2*(S(4,x)*1+S(3,x)*S(1,x))+S(2,x)*S(2,x).
n=4: [5,-12,3] stands also for the row polynomial P1(4,x) = 5-12*x+3*x^2.
CROSSREFS
Row sums (signed array) give A099254. Unsigned row sums are A001629(n+2).
Cf. A115139 (with offset n>=0 is S(n, x) array, decreasing powers of x).
Cf. A294519 (as triangle).
Sequence in context: A328219 A328879 A130542 * A349382 A244306 A345199
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang Apr 04 2007
STATUS
approved