OFFSET
0,3
COMMENTS
Old name was: Denominators of partial sums for a series for Pi/(3*sqrt(3)).
There appears to be a relationship between a(n) and b(n) = Denominator(3*HarmonicNumber(n)). For n=0..8, b(n)=a(n). For n=9..17, b(n)= 3*a(n). Starting at term 18, b(n)/a(n) = 1, 1, 1/5, 1/5, 1/5, 1/5, 1/5, 1, 1, 9, 9, 9, 9, 9, 9. - Gary Detlefs, Oct 12 2011 [adjusted to new definition by Peter Luschny, Oct 15 2012]
FORMULA
a(n+1) = denominator(r(n)) with the rationals r(n):=Sum_{k=0..n} ((-1)^k)*S(k,1)/(k+1) with Chebyshev's S-Polynomials S(n,1)=[1,1,0,-1,-1,0] periodic sequence with period 6. See A010892.
MAPLE
A128501 := n -> ilcm(op(select(j->igcd(j, 3) = 1, [$1..n]))):
seq(A128501(i), i=0..28); # Peter Luschny, Oct 15 2012
MATHEMATICA
a[n_] := If[n == 0, 1, LCM @@ Select[Range[n], GCD[#, 3] == 1&]];
Array[a, 30, 0] (* Jean-François Alcover, Jun 14 2019, from Maple *)
PROG
(Sage)
def A128501(n): return lcm([j for j in (1..n) if gcd(j, 3) == 1])
[A128501(n) for n in (0..28)] # Peter Luschny, Oct 15 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 04 2007
EXTENSIONS
New name and 1 prepended by Peter Luschny, Oct 15 2012
STATUS
approved