OFFSET
0,2
COMMENTS
S2(n,x):=sum(S(n-k,x)*S1(k,x),k=0..n)= sum(a(n,m)*x^(n-2*m),m=0..floor(n/2)) with the first convolution S1(n,x) given by array A128502.
Row polynomials P2(n,x):= sum(a(n,m)*x^m,m=0..floor(n/2)) (increasing powers of x).
LINKS
FORMULA
a(n,m)= binomial(n-m+2,2)*binomial(n-m,m)*(-1)^m, m=0..floor(n/2), n>=0.
a(n,m)= binomial(m+2,2)*binomial(n-m+2,m+2)*(-1)^m, m=0..floor(n/2), n>=0.
G.f. for S2(n,x): 1/(1-x*z+z^2)^3.
G.f. for P2(n,x): 1/(1-z+x*z^2)^3
EXAMPLE
n=4: [15,-30,6] stands for the polynomial S2(4,x) = 15*x^4-30*x^2+6 = 2*(S(4,x)*S1(0,x)+S(3,x)*S1(1,x))+S(2,x)*S1(2,x).
n=4:[15,-30,6] stands also for the row polynomial P2(4,x) = 15-30*x+6*x^2.
[1];[3];[6,-3];[10,-12];[15,-30,6];[21,-60,30];[28,-105,90,-10];...
CROSSREFS
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang Apr 04 2007
STATUS
approved