login
A368952
Irregular triangle T(n,k) read by rows: row n lists the larger number in each pair of triangular numbers (a, b) satisfying a - b = n.
1
1, 3, 6, 3, 10, 15, 6, 21, 6, 28, 10, 36, 45, 15, 10, 55, 10, 66, 21, 78, 15, 91, 28, 105, 15, 120, 36, 21, 15, 136, 153, 45, 171, 28, 21, 190, 55, 210, 21, 231, 66, 36, 21, 253, 28, 276, 78, 300, 45, 325, 91, 28, 351, 36, 378, 105, 55, 28, 406, 28, 435, 120, 465, 66, 45, 36
OFFSET
1,2
COMMENTS
The length of row n in the triangle is A001227(n) and its first column T(n, 1) is ordered. Also, A001227(n) = number of 1s in row n of the triangle of A237048 = length of row n in the triangle of A280851. The records of row lengths in the triangle form sequence A038547.
FORMULA
n = A000217(x) - A000217(y), x > y >= 0, precisely when sqrt( (2*x + 1)^2 - 8*n ) is an integer.
EXAMPLE
For n=3 with 0 <= k <= 6, sqrt((2*k + 1)^2 - 8*3) has integer values for k=2, 3, so that the pairs of triangular numbers are (3, 0) and (6, 3), and row 3 of the triangle consists of 6 and 3.
The first 20 rows of the irregular triangle:
n| k: 1 2 3 4
-----------------------------
1| 1
2| 3
3| 6 3
4| 10
5| 15 6
6| 21 6
7| 28 10
8| 36
9| 45 15 10
10| 55 10
11| 66 21
12| 78 15
13| 91 28
14| 105 15
15| 120 36 21 15
16| 136
17| 153 45
18| 171 28 21
19| 190 55
20| 210 21
...
MATHEMATICA
a000217[k_] := k (k+1)/2
triangle[n_] := Map[a000217, Select[Range[a000217[n], 0, -1], IntegerQ[Sqrt[(2#+1)^2 -8n]]&]]
a368952[n_] := Flatten[Map[triangle, Range[n]]]
a368952[30]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Hartmut F. W. Hoft, Jan 10 2024
STATUS
approved