The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038547 Least number with exactly n odd divisors. 59
 1, 3, 9, 15, 81, 45, 729, 105, 225, 405, 59049, 315, 531441, 3645, 2025, 945, 43046721, 1575, 387420489, 2835, 18225, 295245, 31381059609, 3465, 50625, 2657205, 11025, 25515, 22876792454961, 14175, 205891132094649, 10395, 1476225, 215233605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also least odd number with exactly n divisors. - Lekraj Beedassy, Aug 30 2006 a(2n-1) = {1, 9, 81, 729, 225, 59049, ...} are the squares. A122842(n) = sqrt(a(2n-1)) = {1, 3, 9, 27, 15, 243, 729, 45, 6561, 19683, 135, 177147, 225, 105, 4782969, 14348907, 1215, ...}. - Alexander Adamchuk, Sep 13 2006 Also the least number k such that there are n partitions of k whose elements are consecutive integers. I.e., 1=1, 3=1+2=3, 9=2+3+4=4+5=9, 15=1+2+3+4+5=4+5+6=7+8=15, etc. - Robert G. Wilson v, Jun 02 2007 The politeness of an integer, A069283(n), is defined to be the number of its nontrivial runsum representations, and the sequence 3, 9, 15, 81, 45, 729, 105, ... represents the least integers to have a politeness of 1, 2, 3, 4, ... This is also the sequence of smallest integers with n+1 odd divisors and so apart from the leading 1, is precisely this sequence. - Ant King, Sep 23 2009 a(n) is also the least number k with the property that the symmetric representation of sigma(k) has n subparts. - Omar E. Pol, Dec 31 2016 LINKS Don Reble, Table of n, a(n) for n = 1..2000 T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6. FORMULA a(p) = 3^(p-1) for primes p. - Zak Seidov, Apr 18 2006 a(n) = A119265(n,n). - Reinhard Zumkeller, May 11 2006 It was suggested by Alexander Adamchuk that for all n >= 1, we have a(3^(n-1)) = (p(n)#/2)^2 = (A002110(n)/2)^2 = A070826(n)^2. But this is false! E.g., (p(n)#/2)^2 = 3^2 * 5^2 * 7^2 * ... * 23^2 * 29^2 does indeed have 3^9 odd factors, but it is greater than 3^8 * 5^2 * 7^2 * ... * 23^2 which has 9*3*3*3*3*3*3*3 = 9*3^7 = 3^9 odd factors. - Richard Sabey, Oct 06 2007 a(A053640(m)) = a(A000005(A053624(m))) = A053624(m). - Rick L. Shepherd, Apr 20 2008 a(p^k) = Product_{i=1..k} prime(i+1)^(p-1), p prime and k >= 0, only when p_(k+1) < 3^p. - Hartmut F. W. Hoft, Nov 03 2022 EXAMPLE a(2^3) = 105 = 3*5 while a(2^4) = 945 = 3^3 * 5 * 7. There are 5 partition lists for the exponents of numbers with 16 odd divisors; they are {1, 1, 1, 1}, {3, 1, 1}, {3, 3}, {7, 1}, and {15} that result in the 5 numbers 1155, 945, 3375, 10935, and 14348907. Number a(3^8) = a(6561) = 3^2 * 5^2 * ... * 19^2 * 23^2 = 12442607161209225 while a(3^9) = a(19683) = 3^8 * 5^2 * ... * 19^2 * 23^2 = 9070660620521525025. The numbers a(5^52) = 3^4 * 5^4 * 7^4 * ... and a(5^53) = 3^24 * 5^4 * 7^4 * ... have 393 and 402 digits, respectively. - Hartmut F. W. Hoft, Nov 03 2022 MATHEMATICA Table[Select[Range[1, 532000, 2], DivisorSigma[0, #]==k+1 &, 1], {k, 0, 15}]//Flatten (* Ant King, Nov 28 2010 *) 2#-1&/@With[{ds=DivisorSigma[0, Range[1, 600000, 2]]}, Table[Position[ds, n, 1, 1], {n, 16}]]//Flatten (* The program is not suitable for generating terms beyond a(16) *) (* Harvey P. Dale, Jun 06 2017 *) (* direct computation of A038547(n) *) (* Function by Vaclav Kotesovecin A005179, Apr 04 2021, modified for odd divisors *) mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 06:45 EDT 2024. Contains 371906 sequences. (Running on oeis4.)