login
A038544
a(n) = Sum_{i=0..10^n} i^3.
4
1, 3025, 25502500, 250500250000, 2500500025000000, 25000500002500000000, 250000500000250000000000, 2500000500000025000000000000, 25000000500000002500000000000000, 250000000500000000250000000000000000, 2500000000500000000025000000000000000000
OFFSET
0,2
COMMENTS
These terms k = x.y satisfy Diophantine equation x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. So, this is a subsequence of A350870 and A238237. - Bernard Schott, Jan 20 2022
FORMULA
a(n) = (10^n+1)^2 * 10^(2*n) / 4.
From Bernard Schott, Jan 20 2022: (Start)
a(n) = A037156(n)^2.
a(n) = A350869(n) + 10^(3*n). (End)
EXAMPLE
a(1) = Sum_{i=0..10} i^3 = (Sum_{i=0..10} i)^2 = 3025.
PROG
(PARI) sumcu(n) = for(x=0, n, y=10^x; z=y^2*(y+1)^2/4; (print1(z", "))) \\ Cino Hilliard, Jun 18 2007
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
STATUS
approved