|
|
A038545
|
|
a(n) = Sum_{i=0..10^n} i^10.
|
|
0
|
|
|
1, 14914341925, 959924142434241924250, 91409924241424243424241924242500, 9095909924242414242424342424241924242425000, 909140909924242424142424242434242424241924242424250000, 90909590909924242424241424242424243424242424241924242424242500000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Jacob Bernoulli gives a(3) in Ars Conjectandi. - Charles R Greathouse IV, Dec 18 2019
|
|
LINKS
|
Table of n, a(n) for n=0..6.
Jacob Bernoulli, Ars Conjectandi (1713). (German translation?, see p. 99)
Burkard Polster, Power sum MASTER CLASS: How to sum quadrillions of powers ... by hand! (Euler-Maclaurin formula), Mathologer video (2019)
|
|
FORMULA
|
a(n) = 1/11*(10^n+1)^11 - 1/2*(10^n+1)^10 + 5/6*(10^n+1)^9 - (10^n+1)^7 + (10^n+1)^5 - 1/2*(10^n + 1)^3 + 5/66*10^n + 5/66.
a(n) = A023002(10^n). - Charles R Greathouse IV, Dec 18 2019
|
|
MAPLE
|
a:= n-> sum(i^10, i=0..10^n):
seq(a(n), n=0..10); # Alois P. Heinz, Jan 19 2021
|
|
MATHEMATICA
|
Table[Sum[i^10, {i, 10^n}], {n, 0, 5}] (* Harvey P. Dale, Jul 02 2016 *)
|
|
PROG
|
(PARI) a(n)=(6*(10^n)^11 + 33*(10^n)^10 + 55*(10^n)^9 - 66*(10^n)^7 + 66*(10^n)^5 - 33*(10^n)^3 + 5*(10^n))/66 \\ Charles R Greathouse IV, Dec 18 2019, modified by Sean A. Irvine, Jan 19 2021
|
|
CROSSREFS
|
Cf. A023002.
Sequence in context: A172617 A216015 A246109 * A186094 A023050 A233704
Adjacent sequences: A038542 A038543 A038544 * A038546 A038547 A038548
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Marvin Ray Burns
|
|
STATUS
|
approved
|
|
|
|