login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246109
Number of inequivalent 8 X 8 matrices with entries from [n], where equivalence means permutations of rows or columns.
2
0, 1, 14685630688, 2130536585704570302966, 209493560585995285291677153144, 333504381764054807093590006199733915, 38963096281905114770318673967657388979120, 750304814691805977574386038534306614497574954, 3861175753082201291221743022346066208381644388448
OFFSET
0,3
FORMULA
a(n) = 1/8!^2*(n^62 +56*n^54 +784*n^48 +644*n^46 +11760*n^42 +6272*n^40 +48020*n^38 +36064*n^36 +309680*n^34 +176400*n^32 +1060423*n^30 +423360*n^28 +4877264*n^26 +4845120*n^24 +14721560*n^22 +17144512*n^20 +41692336*n^18 +41106688*n^16 +123789552*n^14 +139448064*n^12 +197401344*n^10 +190027776*n^8 +288610560*n^6 +239339520*n^4 +235468800*n^2 +85155840)*n^2.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [[]],
`if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
b(n-i*j, i-1))[], j=1..n/i)]))
end:
a:= proc(n) unapply(add(add(x^add(add(i[2]*j[2]*
igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
/mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)), x)
end(8):
seq(a(n), n=0..10);
CROSSREFS
Row n=8 of A246106.
Sequence in context: A172595 A172617 A216015 * A038545 A186094 A023050
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 13 2014
STATUS
approved