Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 May 02 2022 10:24:42
%S 0,1,14685630688,2130536585704570302966,
%T 209493560585995285291677153144,333504381764054807093590006199733915,
%U 38963096281905114770318673967657388979120,750304814691805977574386038534306614497574954,3861175753082201291221743022346066208381644388448
%N Number of inequivalent 8 X 8 matrices with entries from [n], where equivalence means permutations of rows or columns.
%H Alois P. Heinz, <a href="/A246109/b246109.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Mat#inequiv">Index to number of inequivalent matrices modulo permutation of rows and columns</a>
%F a(n) = 1/8!^2*(n^62 +56*n^54 +784*n^48 +644*n^46 +11760*n^42 +6272*n^40 +48020*n^38 +36064*n^36 +309680*n^34 +176400*n^32 +1060423*n^30 +423360*n^28 +4877264*n^26 +4845120*n^24 +14721560*n^22 +17144512*n^20 +41692336*n^18 +41106688*n^16 +123789552*n^14 +139448064*n^12 +197401344*n^10 +190027776*n^8 +288610560*n^6 +239339520*n^4 +235468800*n^2 +85155840)*n^2.
%p b:= proc(n, i) option remember; `if`(n=0, [[]],
%p `if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
%p b(n-i*j, i-1))[], j=1..n/i)]))
%p end:
%p a:= proc(n) unapply(add(add(x^add(add(i[2]*j[2]*
%p igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
%p /mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)), x)
%p end(8):
%p seq(a(n), n=0..10);
%Y Row n=8 of A246106.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Aug 13 2014