login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246111
Number of inequivalent 10 X 10 matrices with entries from [n], where equivalence means permutations of rows or columns.
2
0, 1, 105735224248507784, 39197947672609240635681299333726499, 122042291850117110186411151373496788803833567344, 599071101908675118606355537962231556550216893297767505350, 49613471837781303435661841941440050234912472934180371572880191904
OFFSET
0,3
FORMULA
a(n) = 1/10!^2*(n^98 +90*n^88 +2025*n^80 +1740*n^78 +56700*n^72 +21600*n^70 +18900*n^68 +396900*n^66 +341100*n^64 +869400*n^62 +3969000*n^60 +126546*n^58 +20704950*n^56 +12039300*n^54 +31067820*n^52 +148602825*n^50 +42387975*n^48 +317648520*n^46 +565828200*n^44 +1281483000*n^42 +2237949000*n^40 +2984535664*n^38 +7012483800*n^36 +13249603200*n^34 +22883250880*n^32 +27251386200*n^30 +67958469720*n^28 +101700222480*n^26 +171243702000*n^24 +256351060800*n^22 +344831018400*n^20 +534080757024*n^18 +779152348800*n^16 +1222054473600*n^14 +1199867616000*n^12 +1352864851200*n^10 +2244578999040*n^8 +1451810304000*n^6 +1656953625600*n^4 +1288659456000*n^2 +418037760000)*n^2.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [[]],
`if`(i<1, [], [b(n, i-1)[], seq(map(p->[p[], [i, j]],
b(n-i*j, i-1))[], j=1..n/i)]))
end:
a:= proc(n) unapply(add(add(x^add(add(i[2]*j[2]*
igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
/mul(i[1]^i[2]*i[2]!, i=t), t=b(n$2)), s=b(n$2)), x)
end(10):
seq(a(n), n=0..10);
CROSSREFS
Row n=10 of A246106.
Sequence in context: A097717 A128857 A357515 * A067818 A262560 A095433
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 13 2014
STATUS
approved