login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136107 Number of representations of n as the difference of two positive triangular numbers. 12
0, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 1, 2, 4, 2, 1, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 3, 4, 2, 2, 4, 3, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 3, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 3, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 3, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
a(n) is also the number of partitions of n into consecutive parts greater than 1. - Omar E. Pol, Feb 07 2022
a(n) is the number of solutions of the equations 2(x-1)y-(x-3)x=2(n+1) for 0<x<=y, x-values in A351284; y-values in A351285. Also the number of times n+1 appears in A351153. - Stefano Spezia, Feb 12 2022
Equivalence with Stefano Spezia solutions: The equation 2(x-1)y-(x-3)x=2(n+1) can be rewritten (y+1-x/2)(x+1)=n; proof by solving both for y. So solutions factorize n, and since x+1 must be integer and y+1-x/2 must be integer, x must be even. So (x+1)|n means we are looking for odd divisors of n, which is the A001227 term of the Alekseyev formula. The correction by A010054 in the Alekseyev formula means: if n is a triangular number, the solution x=y+1 where x>y is not counted by Spezia. - R. J. Mathar, Feb 12 2022
LINKS
FORMULA
G.f.: Sum_{n>=1} x^((n^2+3*n)/2)/(1-x^n). - Vladeta Jovovic, May 13 2008
a(n) = A001227(n) - A010054(n). - Max Alekseyev, May 13 2009
EXAMPLE
a(2) = 1 because 3 - 1 = 2,
a(5) = 2 because 6 - 1 = 15 - 10 = 5,
a(9) = 3 because 10 - 1 = 15 - 6 = 45 - 36 = 9, etc.
For n = 21 the four partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6] and [6, 5, 4, 3, 2, 1]. The last partition contains 1 as a part, hence there are only three partitions of 21 into consecutive parts whose parts are greater than 1, so a(21) = 3. - Omar E. Pol, Feb 07 2022
MATHEMATICA
f[n_] := Block[{c = 0, k = 1}, While[k < n, If[ IntegerQ[ Sqrt[8 n + 4 k (k + 1) + 1]], c++ ]; k++ ]; c]; Table[f@n, {n, 105}]
CROSSREFS
Sequence in context: A318831 A303710 A263280 * A178691 A329313 A329312
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 08:51 EST 2023. Contains 367411 sequences. (Running on oeis4.)