login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136105
Partial sums of A051941.
0
6, 27, 73, 155, 285, 476, 742, 1098, 1560, 2145, 2871, 3757, 4823, 6090, 7580, 9316, 11322, 13623, 16245, 19215, 22561, 26312, 30498, 35150, 40300, 45981, 52227, 59073, 66555, 74710, 83576, 93192, 103598, 114835, 126945, 139971, 153957
OFFSET
8,1
COMMENTS
Inverse binomial transform gives 6, 21, 25, 11, 1, 0, 0, ... (0 continued). - R. J. Mathar, May 17 2008
FORMULA
a(n) = Sum_{j=8..n} Sum_{k=8..j} ((k*(k+1)/2)-30). [corrected by Jason Yuen, Sep 26 2024]
a(n) = Sum_{j=8..n} (1/6)*(j-7)*(j^2+10*j-108).
a(n) = (n-6)(n-7)(n^2+19n-144)/24. O.g.f: x^8(6-3x-2x^2)/(1-x)^5. - R. J. Mathar, May 17 2008
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) with a(8)=6, a(9)=27, a(10)=73, a(11)=155, a(12)=285. - Harvey P. Dale, Oct 20 2013
MATHEMATICA
Accumulate[LinearRecurrence[{4, -6, 4, -1}, {6, 21, 46, 82}, 50]] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {6, 27, 73, 155, 285}, 50] (* Harvey P. Dale, Oct 20 2013 *)
CROSSREFS
Cf. A051941.
Sequence in context: A085788 A027276 A101970 * A239568 A198958 A027313
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 10 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, May 17 2008
STATUS
approved