OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = 3/2 * n*(n+1)^2 = 3 * A006002(n).
a(n) = Sum_{j=1..n} (j+n+1)*(n+1). - Zerinvary Lajos, Sep 10 2006
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: 3*x*(x+2) / (x-1)^4. - Colin Barker, Mar 17 2014
MAPLE
a:=n->sum(sum(sum(j-k+1, j=1..n), k=0..n), m=0..n): seq(a(n), n=1..45); # Zerinvary Lajos, May 30 2007
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {6, 27, 72, 150}, 50] (* Harvey P. Dale, Dec 14 2017 *)
PROG
(PARI) v=vector(40, i, i*(i+1)/2); s=0; forstep(i=3, 40, 3, s+=v[i]; print1(s", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Jul 23 2003
EXTENSIONS
Edited and more terms from Michel Marcus, Mar 17 2014
STATUS
approved