%I #11 Jun 03 2024 18:40:36
%S 1,3,6,3,10,15,6,21,6,28,10,36,45,15,10,55,10,66,21,78,15,91,28,105,
%T 15,120,36,21,15,136,153,45,171,28,21,190,55,210,21,231,66,36,21,253,
%U 28,276,78,300,45,325,91,28,351,36,378,105,55,28,406,28,435,120,465,66,45,36
%N Irregular triangle T(n,k) read by rows: row n lists the larger number in each pair of triangular numbers (a, b) satisfying a - b = n.
%C The length of row n in the triangle is A001227(n) and its first column T(n, 1) is ordered. Also, A001227(n) = number of 1s in row n of the triangle of A237048 = length of row n in the triangle of A280851. The records of row lengths in the triangle form sequence A038547.
%F n = A000217(x) - A000217(y), x > y >= 0, precisely when sqrt( (2*x + 1)^2 - 8*n ) is an integer.
%e For n=3 with 0 <= k <= 6, sqrt((2*k + 1)^2 - 8*3) has integer values for k=2, 3, so that the pairs of triangular numbers are (3, 0) and (6, 3), and row 3 of the triangle consists of 6 and 3.
%e The first 20 rows of the irregular triangle:
%e n| k: 1 2 3 4
%e -----------------------------
%e 1| 1
%e 2| 3
%e 3| 6 3
%e 4| 10
%e 5| 15 6
%e 6| 21 6
%e 7| 28 10
%e 8| 36
%e 9| 45 15 10
%e 10| 55 10
%e 11| 66 21
%e 12| 78 15
%e 13| 91 28
%e 14| 105 15
%e 15| 120 36 21 15
%e 16| 136
%e 17| 153 45
%e 18| 171 28 21
%e 19| 190 55
%e 20| 210 21
%e ...
%t a000217[k_] := k (k+1)/2
%t triangle[n_] := Map[a000217, Select[Range[a000217[n], 0, -1], IntegerQ[Sqrt[(2#+1)^2 -8n]]&]]
%t a368952[n_] := Flatten[Map[triangle, Range[n]]]
%t a368952[30]
%Y Cf. A000217, A001227, A038547, A136107, A237048, A280851.
%K nonn,tabf
%O 1,2
%A _Hartmut F. W. Hoft_, Jan 10 2024