login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128505
Irregular triangular array a(n,m) for third (k=3) convolution of Chebyshev's S(n,x) = U(n,x/2) polynomials, read by rows (n >=0, 0 <= m <= floor(n/2)).
2
1, 4, 10, -4, 20, -20, 35, -60, 10, 56, -140, 60, 84, -280, 210, -20, 120, -504, 560, -140, 165, -840, 1260, -560, 35, 220, -1320, 2520, -1680, 280, 286, -1980, 4620, -4200, 1260, -56, 364, -2860, 7920, -9240, 4200, -504, 455, -4004, 12870, -18480, 11550, -2520, 84, 560, -5460, 20020, -34320
OFFSET
0,2
COMMENTS
S3(n,x) := Sum_{k=0..n} S(n-k,x)*S2(k,x) = Sum_{m=0..floor(n/2)} a(n,m)*x^(n-2*m) with the second convolution S2(n,x) given by array A128503.
Row polynomials P3(n,x) := Sum_{m=0..floor(n/2)} a(n,m)*x^m (increasing powers of x).
FORMULA
a(n,m) = binomial(n-m+3,3)*binomial(n-m,m)*(-1)^m, m = 0..floor(n/2), n >= 0.
a(n,m) = binomial(m+3,3)*binomial(n-m+3,m+3)*(-1)^m, m = 0..floor(n/2), n >= 0.
G.f. for S3(n,x): 1/(1-x*z+z^2)^4.
G.f. for P3(n,x): 1/(1-z+x*z^2)^4.
EXAMPLE
1;
4;
10, -4;
20, -20;
35, -60, 10;
56, -140, 60;
84, -280, 210, -20;
120,-504, 560, -140;
...
n=4: [35,-60,10] stands also for the row polynomial P3(4,x) = 35-60*x+10*x^2.
CROSSREFS
Row sums (signed array) give A128506. Unsigned row sums are A001872.
Cf. A128503 (k=2 convolution).
Sequence in context: A151707 A059132 A059136 * A336988 A200454 A303052
KEYWORD
sign,tabf,easy
AUTHOR
Wolfdieter Lang, Apr 04 2007
EXTENSIONS
Name edited by Petros Hadjicostas, Sep 04 2019
STATUS
approved