login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309824
Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/3).
4
1, 4, 8, 7, 1, 5, 1, 7, 8, 7, 5, 5, 8, 0, 6, 0, 8, 4, 0, 2, 4, 6, 5, 9, 1, 5, 4, 0, 5, 2, 8, 6, 0, 3, 5, 7, 2, 9, 5, 7, 9, 4, 4, 5, 3, 8, 1, 1, 0, 9, 3, 5, 4, 8, 4, 7, 4, 4, 3, 1, 3, 5, 0, 3, 7, 0, 2, 0, 9, 8, 7, 2, 6, 1, 1, 6, 1, 0, 5, 9, 7, 6, 3, 6, 7, 7, 6, 7, 7, 0, 9, 8, 1, 4, 3, 3, 3, 3, 7, 1
OFFSET
0,2
COMMENTS
x = ...068250451956420480608557871517841.
x^3 = ...123456789876543212345678987654321.
LINKS
EXAMPLE
1^3 == 1 (mod 10).
41^3 == 21 (mod 10^2).
841^3 == 321 (mod 10^3).
7841^3 == 4321 (mod 10^4).
17841^3 == 54321 (mod 10^5).
517841^3 == 654321 (mod 10^6).
1517841^3 == 7654321 (mod 10^7).
71517841^3 == 87654321 (mod 10^8).
871517841^3 == 987654321 (mod 10^9).
7871517841^3 == 8987654321 (mod 10^10).
57871517841^3 == 78987654321 (mod 10^11).
557871517841^3 == 678987654321 (mod 10^12).
8557871517841^3 == 5678987654321 (mod 10^13).
8557871517841^3 == 45678987654321 (mod 10^14).
608557871517841^3 == 345678987654321 (mod 10^15).
608557871517841^3 == 2345678987654321 (mod 10^16).
80608557871517841^3 == 12345678987654321 (mod 10^17).
PROG
(PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/3), 2^N), Mod((M+O(5^N))^(1/3), 5^N)))), N)
CROSSREFS
Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): this sequence (k=3), A309825 (k=7), A309826 (k=9).
Cf. A309818.
Sequence in context: A019650 A193081 A269574 * A309818 A201658 A146501
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 18 2019
STATUS
approved