|
|
A146501
|
|
Period 6: repeat [4,8,7,5,1,2].
|
|
6
|
|
|
4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Terms of the simple continued fraction of 481/(sqrt(548587)-624). Decimal expansion of 488/1001. - Paolo P. Lava, Feb 17 2009
|
|
LINKS
|
Table of n, a(n) for n=0..101.
Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
|
|
FORMULA
|
a(n) = (1/30)*(-(n mod 6) + 4*((n+1) mod 6) + 29*((n+2) mod 6) + 19*((n+3) mod 6) + 14*((n+4) mod 6) - 11*((n+5) mod 6)), with n >= 0. - Paolo P. Lava, Nov 06 2008
G.f.: (4+4*x-x^2+2*x^3)/((1-x)*(1+x)*(1-x+x^2)). - Jaume Oliver Lafont, Aug 30 2009
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, -1, 1}, {4, 8, 7, 5}, 102] (* Ray Chandler, Jul 15 2015 *)
|
|
CROSSREFS
|
Cf. A029898, A141425, A141430, A146322.
Sequence in context: A309824 A309818 A201658 * A197574 A337606 A019924
Adjacent sequences: A146498 A146499 A146500 * A146502 A146503 A146504
|
|
KEYWORD
|
nonn,easy,less
|
|
AUTHOR
|
Paul Curtz, Oct 30 2008
|
|
EXTENSIONS
|
Extended by Ray Chandler, Jul 15 2015
|
|
STATUS
|
approved
|
|
|
|