OFFSET
0,5
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..10000
EXAMPLE
The a(3) = 1 through a(8) = 18 triples:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6)
(1,2,1) (1,2,2) (1,2,3) (1,3,3) (1,2,5)
(2,1,1) (1,3,1) (1,3,2) (1,5,1) (1,3,4)
(2,1,2) (1,4,1) (2,2,3) (1,4,3)
(2,2,1) (2,1,3) (2,3,2) (1,5,2)
(3,1,1) (2,3,1) (3,1,3) (1,6,1)
(3,1,2) (3,2,2) (2,1,5)
(3,2,1) (3,3,1) (2,3,3)
(4,1,1) (5,1,1) (2,5,1)
(3,1,4)
(3,2,3)
(3,3,2)
(3,4,1)
(4,1,3)
(4,3,1)
(5,1,2)
(5,2,1)
(6,1,1)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {3}], CoprimeQ@@Union[#]&]], {n, 0, 100}]
CROSSREFS
A220377*6 is the strict case.
A337461 is the strict case except for any number of 1's.
A337601 is the unordered version.
A337602 considers all singletons to be coprime.
A000217(n - 2) counts 3-part compositions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304711 ranks partitions whose distinct parts are pairwise coprime.
A305713 counts strict pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 20 2020
STATUS
approved