login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364018
Expansion of Sum_{k>0} (-1)^(k-1) * x^(3*k-1) / (1 - x^(3*k-1))^3.
2
0, 1, 0, 3, -1, 6, 0, 11, 0, 12, -1, 21, 0, 29, -6, 39, -1, 45, 0, 46, 0, 63, -1, 84, -15, 92, 0, 108, -1, 99, 0, 147, -6, 150, -29, 171, 0, 191, 0, 192, -1, 237, 0, 244, -45, 273, -1, 321, 0, 271, -6, 354, -1, 378, -81, 445, 0, 432, -1, 393, 0, 497, 0, 567, -92, 540, 0, 586, -6, 537, -1, 711, 0, 704, -120, 744
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{k>0} k*(k+1)/2 * x^(2*k) / (1 + x^(3*k)).
a(n) = Sum_{d|n, n/d==2 (mod 3)} (-1)^(n/d) * binomial(d+1,2).
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^(n/#) * Binomial[#+1, 2] &, Mod[n/#, 3] == 2 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d%3==2)*(-1)^(n/d)*binomial(d+1, 2));
CROSSREFS
Sequence in context: A298241 A113817 A197151 * A083238 A344574 A337604
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 01 2023
STATUS
approved