|
|
A344574
|
|
Number of ordered pairs (i,j) with 0 < i < j < n such that gcd(i,j,n) > 1.
|
|
0
|
|
|
0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 0, 105, 46, 120, 21, 181, 0, 153, 67, 189, 0, 262, 0, 213, 118, 231, 0, 337, 15, 306, 121, 303, 0, 433, 51, 369, 154, 378, 0, 583, 0, 435, 217, 465
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
COMMENTS
|
A 4-regular circulant graph of order n, C(n,i,j), is connected if and only if gcd(n,i,j) = 1, where 0 < i < j < n.
|
|
LINKS
|
Table of n, a(n) for n=1..64.
Paul Theo Meijer, Connectivities and diameters of circulant graphs
Eric Weisstein's World of Mathematics, Circulant Graph
|
|
MATHEMATICA
|
npairs[n_]:=Module[{k=0},
Do[Do[
If[GCD[i, j, n]>1, k++]
, {i, 1, j-1}], {j, 2, n-1}];
Return[k]];
Table[npairs[n], {n, 1, 60}]
|
|
CROSSREFS
|
Cf. A000741, A075545, A344517.
Sequence in context: A113817 A197151 A083238 * A337604 A117782 A317855
Adjacent sequences: A344571 A344572 A344573 * A344575 A344576 A344577
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Andres Cicuttin, May 23 2021
|
|
STATUS
|
approved
|
|
|
|