login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344517
Minimum diameter of 4-regular circulant graphs of order n.
1
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7
OFFSET
4,3
REFERENCES
F. Boesch and Jhing-Fa Wang, Reliable circulant networks with minimum transmission delay, IEEE Transactions on Circuits and Systems, vol. 32, no. 12, pp. 1286-1291, December 1985, doi: 10.1109/TCS.1985.1085667.
Bevan, David et al. Large circulant graphs of fixed diameter and arbitrary degree. Ars Math. Contemp. 13 (2017): 275-291.
LINKS
R. Feria-Puron, H. Perez-Roses, and J. Ryan, Searching for Large Circulant Graphs, arXiv:1503.07357 [math.CO], 2015.
Eric Weisstein's World of Mathematics, Graph Diameter
Wikipedia, Circulant Graph
FORMULA
a(n) = ceiling((sqrt(2n-1)-1)/2).
MATHEMATICA
mindiameter[n_]:=Module[{nmax, tab, stab},
nmax=Floor[n/2];
tab=Flatten[#, 1]&@Table[Table[{n, i, j, GraphDiameter[CirculantGraph[n, {i, j}]]}, {i, 1, j-1}], {j, 2, nmax}];
stab=Sort[tab, #1[[4]]<#2[[4]]&];
stab[[1]][[4]]//Return]
Table[mindiameter[n], {n, 4, 120}]
Table[Ceiling[(Sqrt[2n-1]-1)/2], {n, 4, 88}] (* Stefano Spezia, May 23 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Andres Cicuttin, May 21 2021
STATUS
approved