Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jun 13 2021 03:33:50
%S 1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,
%T 4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,
%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7
%N Minimum diameter of 4-regular circulant graphs of order n.
%D F. Boesch and Jhing-Fa Wang, Reliable circulant networks with minimum transmission delay, IEEE Transactions on Circuits and Systems, vol. 32, no. 12, pp. 1286-1291, December 1985, doi: 10.1109/TCS.1985.1085667.
%D Bevan, David et al. Large circulant graphs of fixed diameter and arbitrary degree. Ars Math. Contemp. 13 (2017): 275-291.
%H R. Feria-Puron, H. Perez-Roses, and J. Ryan, <a href="http://arxiv.org/abs/1503.07357">Searching for Large Circulant Graphs</a>, arXiv:1503.07357 [math.CO], 2015.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphDiameter.html">Graph Diameter</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_graph">Circulant Graph</a>
%F a(n) = ceiling((sqrt(2n-1)-1)/2).
%t mindiameter[n_]:=Module[{nmax,tab,stab},
%t nmax=Floor[n/2];
%t tab=Flatten[#,1]&@Table[Table[{n,i,j,GraphDiameter[CirculantGraph[n,{i,j}]]},{i,1,j-1}],{j,2,nmax}];
%t stab=Sort[tab,#1[[4]]<#2[[4]]&];
%t stab[[1]][[4]]//Return]
%t Table[mindiameter[n],{n,4,120}]
%t Table[Ceiling[(Sqrt[2n-1]-1)/2],{n,4,88}] (* _Stefano Spezia_, May 23 2021 *)
%Y Cf. A049287, A075545, A285620.
%K nonn
%O 4,3
%A _Andres Cicuttin_, May 21 2021