login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered pairs (i,j) with 0 < i < j < n such that gcd(i,j,n) > 1.
1

%I #25 Nov 27 2024 06:18:41

%S 0,0,0,0,0,1,0,3,1,6,0,13,0,15,7,21,0,37,0,39,16,45,0,73,6,66,28,81,0,

%T 130,0,105,46,120,21,181,0,153,67,189,0,262,0,213,118,231,0,337,15,

%U 306,121,303,0,433,51,369,154,378,0,583,0,435,217,465

%N Number of ordered pairs (i,j) with 0 < i < j < n such that gcd(i,j,n) > 1.

%C A 4-regular circulant graph of order n, C(n,i,j), is connected if and only if gcd(n,i,j) = 1, where 0 < i < j < n.

%C a(n) >= 1 iff n is a composite > 4. - _Robert Israel_, Nov 26 2024

%H Robert Israel, <a href="/A344574/b344574.txt">Table of n, a(n) for n = 1..10000</a>

%H Paul Theo Meijer, <a href="https://core.ac.uk/display/56367757">Connectivities and diameters of circulant graphs</a>, Thesis, 1991, Simon Fraser University.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CirculantGraph.html">Circulant Graph</a>

%e a(8) = 3 via (i, j, n) in {(2, 4, 8), (2, 6, 8), (4, 6, 8)} and that's three such tuples. - _David A. Corneth_, Nov 27 2024

%p f:= proc(n) local t,i,g;

%p t:= 0:

%p for i from 1 to n-2 do

%p g:= igcd(i,n);

%p if g > 1 then t:= t + nops(select(s -> igcd(s,g) > 1, [$i+1..n-1])) fi

%p od:

%p t;

%p end proc:

%p map(f, [$1..80]); # _Robert Israel_, Nov 26 2024

%t npairs[n_]:=Module[{k=0},

%t Do[Do[

%t If[GCD[i,j,n]>1,k++]

%t ,{i,1,j-1}],{j,2,n-1}];

%t Return[k]];

%t Table[npairs[n],{n,1,60}]

%o (PARI) a(n) = {my(res = 0, d = divisors(factorback(factor(n)[,1]))); for(i = 2, #d, res+= moebius(d[i])*binomial((n-1)\d[i], 2)); -res \\ _David A. Corneth_, Nov 27 2024

%Y Cf. A000741, A075545, A344517.

%K nonn,easy,look

%O 1,8

%A _Andres Cicuttin_, May 23 2021