login
A301331
Number of compositions (ordered partitions) of n into parts having the same number of divisors as n.
2
1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 1, 20, 1, 46, 3, 1, 1, 232, 1, 501, 1, 3, 9, 2352, 1, 6, 14, 6, 1, 24442, 1, 53243, 3, 16, 55, 32, 1, 550863, 107, 55, 1, 2616338, 1, 5701553, 6, 1, 406, 27077005, 1, 25, 9, 606, 9, 280237217, 3, 1244, 1, 1839, 3185, 2900328380, 1, 6320545915, 6248, 3, 1, 7828
OFFSET
0,6
FORMULA
a(n) = [x^n] 1/(1 - Sum_{d(k) = d(n)} x^k).
EXAMPLE
a(14) = 3 because we have [14], [8, 6] and [6, 8], where 14, 8 and 6 are numbers with 4 divisors.
MAPLE
with(numtheory):
a:= proc(m) option remember; local k, b; k, b:= tau(m),
proc(n) option remember; `if`(n=0, 1,
add(`if`(tau(j)=k, b(n-j), 0), j=1..n))
end: b(m)
end:
seq(a(n), n=0..80); # Alois P. Heinz, Mar 18 2018
MATHEMATICA
Table[SeriesCoefficient[1/(1 - Sum[Boole[DivisorSigma[0, k] == DivisorSigma[0, n]] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 65}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 18 2018
STATUS
approved