login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301334
a(n) = [x^n] 1/(1 + n*(1 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.
2
1, 1, 4, 30, 288, 3500, 51882, 908705, 18376192, 421518897, 10815546010, 306954846231, 9547629128208, 322979502072591, 11805623386524688, 463679308850798265, 19474458473055138816, 870962008703995217038, 41324081662873427484240, 2073203796753598883831150, 109655938011610286565760400
OFFSET
0,3
COMMENTS
Number of compositions (ordered partitions) of n into triangular numbers of n kinds.
FORMULA
a(n) = [x^n] 1/(1 - n*Sum_{k>=1} x^(k*(k+1)/2)).
a(n) ~ n^n * (1 + 1/n - 3/(2*n^2) - 13/(3*n^3) + 181/(24*n^4) + 2251/(120*n^5) - 34949/(720*n^6) - 221539/(2520*n^7) + 13489169/(40320*n^8) + ...). - Vaclav Kotesovec, Mar 19 2018
MATHEMATICA
Table[SeriesCoefficient[1/(1 + n (1 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[1/(1 - n Sum[x^(k (k + 1)/2), {k, 1, n}]), {x, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 18 2018
STATUS
approved