login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301334 a(n) = [x^n] 1/(1 + n*(1 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function. 2
1, 1, 4, 30, 288, 3500, 51882, 908705, 18376192, 421518897, 10815546010, 306954846231, 9547629128208, 322979502072591, 11805623386524688, 463679308850798265, 19474458473055138816, 870962008703995217038, 41324081662873427484240, 2073203796753598883831150, 109655938011610286565760400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of compositions (ordered partitions) of n into triangular numbers of n kinds.

LINKS

Table of n, a(n) for n=0..20.

Index entries for sequences related to compositions

Index to sequences related to polygonal numbers

FORMULA

a(n) = [x^n] 1/(1 - n*Sum_{k>=1} x^(k*(k+1)/2)).

a(n) ~ n^n * (1 + 1/n - 3/(2*n^2) - 13/(3*n^3) + 181/(24*n^4) + 2251/(120*n^5) - 34949/(720*n^6) - 221539/(2520*n^7) + 13489169/(40320*n^8) + ...). - Vaclav Kotesovec, Mar 19 2018

MATHEMATICA

Table[SeriesCoefficient[1/(1 + n (1 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, n}], {n, 0, 20}]

Table[SeriesCoefficient[1/(1 - n Sum[x^(k (k + 1)/2), {k, 1, n}]), {x, 0, n}], {n, 0, 20}]

CROSSREFS

Cf. A000217, A023361, A301335.

Sequence in context: A172392 A127130 A052631 * A167139 A240958 A054972

Adjacent sequences:  A301331 A301332 A301333 * A301335 A301336 A301337

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Mar 18 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 30 22:16 EDT 2021. Contains 346365 sequences. (Running on oeis4.)