login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052631
a(n) = n!*Pell(n) (or n!*A000129(n)).
1
0, 1, 4, 30, 288, 3480, 50400, 851760, 16450560, 357436800, 8629286400, 229162348800, 6638962176000, 208362342988800, 7042436719718400, 255029193619200000, 9851119008546816000, 404305986955014144000, 17569457946995834880000, 805912049524456562688000
OFFSET
0,3
FORMULA
E.g.f.: -x/(-1 + 2*x + x^2).
Recurrence: {a(1)=1, a(0)=0, (-2-n^2-3*n)*a(n)+(-4-2*n)*a(n+1)+a(n+2)}.
Sum((-1/4)*(-1+_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+2*_Z+_Z^2))*n!.
MAPLE
spec := [S, {S=Prod(Z, Sequence(Union(Z, Z, Prod(Z, Z))))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
with(combstruct):ZL:=[T, {T=Union(Z, Prod(Epsilon, Z, T), Prod(T, Z, Epsilon), Prod(T, Z, Z))}, labeled]:seq(count(ZL, size=i), i=0..19); # Zerinvary Lajos, Dec 16 2007
CROSSREFS
Sequence in context: A127130 A379187 A379279 * A368893 A301334 A167139
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved