OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(p*n + r, n)/(p*n + r); this is the case p = 6, r = 4. The o.g.f. B(x) of the Fuss_catalan sequence a(n,p,r) satisfies B(x) = {1 + x*B(x)^(p/r)}^r. - Peter Bala, Oct 14 2015
LINKS
Wikipedia, Fuss-Catalan number
FORMULA
a(n) = 4*binomial(6*n+4,n)/(6*n+4).
G.f. A(x) = G(x)^4 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^4), where C(x) is the o.g.f. for the Catalan numbers A000108. - Peter Bala, Oct 14 2015
D-finite with recurrence 5*n*(5*n+1)*(5*n+2)*(5*n+3)*(5*n+4)*a(n) -72*(6*n-1)*(3*n-1)*(2*n+1)*(3*n+1)*(6*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
EXAMPLE
MATHEMATICA
m = 20; A[_] = 0;
Do[A[x_] = (1 + x*A[x]^(3/2))^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 20 2019 *)
PROG
(PARI) {a(n)=binomial(6*n+4, n) * 4/(6*n+4)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+4*x); for(i=1, n, A=(1+x*A^(3/2))^4+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Paul D. Hanna, Apr 29 2012
STATUS
approved