login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234465 a(n) = 3*binomial(8*n+6,n)/(4*n+3). 14
1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 8, r = 6.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.

Thomas A. Dowling, Catalan Numbers Chapter 7

Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.

Wikipedia, Fuss-Catalan number

FORMULA

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 8, r = 6.

O.g.f. A(x) = 1/x * series reversion (x/C(x)^6), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/6) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015

MATHEMATICA

Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)

PROG

(PARI) a(n) = 3*binomial(8*n+6, n)/(4*n+3);

(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}

(MAGMA) [3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013

CROSSREFS

Cf. A000108, A007556, A234461, A234462, A234463, A234464, A234466, A234467, A230390, A007556, A069271, A118970, A212073, A233834, A234510, A234571, A235339.

Sequence in context: A001261 A252813 A210987 * A231552 A302103 A229451

Adjacent sequences:  A234462 A234463 A234464 * A234466 A234467 A234468

KEYWORD

nonn,easy

AUTHOR

Tim Fulford, Dec 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 00:21 EDT 2019. Contains 328135 sequences. (Running on oeis4.)