login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] 1/(1 + n*(1 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.
2

%I #7 Mar 19 2018 22:12:59

%S 1,1,4,30,288,3500,51882,908705,18376192,421518897,10815546010,

%T 306954846231,9547629128208,322979502072591,11805623386524688,

%U 463679308850798265,19474458473055138816,870962008703995217038,41324081662873427484240,2073203796753598883831150,109655938011610286565760400

%N a(n) = [x^n] 1/(1 + n*(1 - theta_2(sqrt(x))/(2*x^(1/8)))), where theta_2() is the Jacobi theta function.

%C Number of compositions (ordered partitions) of n into triangular numbers of n kinds.

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>

%F a(n) = [x^n] 1/(1 - n*Sum_{k>=1} x^(k*(k+1)/2)).

%F a(n) ~ n^n * (1 + 1/n - 3/(2*n^2) - 13/(3*n^3) + 181/(24*n^4) + 2251/(120*n^5) - 34949/(720*n^6) - 221539/(2520*n^7) + 13489169/(40320*n^8) + ...). - _Vaclav Kotesovec_, Mar 19 2018

%t Table[SeriesCoefficient[1/(1 + n (1 - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)))), {x, 0, n}], {n, 0, 20}]

%t Table[SeriesCoefficient[1/(1 - n Sum[x^(k (k + 1)/2), {k, 1, n}]), {x, 0, n}], {n, 0, 20}]

%Y Cf. A000217, A023361, A301335.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Mar 18 2018