login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260147 G.f.: (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function. 15
1, 2, 1, 5, 1, 6, 8, 8, 1, 25, 12, 12, 29, 14, 36, 77, 1, 18, 151, 20, 71, 135, 166, 24, 121, 236, 287, 307, 30, 30, 1141, 32, 1, 727, 681, 1247, 314, 38, 970, 1652, 1821, 42, 2633, 44, 331, 6590, 1772, 48, 497, 3053, 7146, 6801, 1717, 54, 4051, 7427, 8009, 12389, 3655, 60, 17842, 62, 4496, 42841, 1, 15731, 6470, 68, 19449, 34754, 65781 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Compare to the curious identities:
(1) Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
(2) Sum_{n=-oo..+oo} (-x)^n * (1 + x^n)^n = 0.
Given G(x,q) = Sum_{n=-oo..+oo} (1 + q^n)^n * q^n * x^n, then
[x^0] G(x,q)^2 = theta_3(q) = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + 2*q^25 +...
LINKS
FORMULA
The g.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n.
(2) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (1 - x^n)^n.
(3) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n)^n.
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n)^n.
(5) A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).
(6) A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^n)^(2*n).
(7) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - x^n)^(2*n).
(8) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + x^n)^(2*n).
a(2^n) = 1 for n > 0 (conjecture).
a(p) = p+1 for primes p > 3 (conjecture).
From Peter Bala, Jan 23 2021: (Start)
The following are conjectural:
A(x^2) = Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1) )^(2*n+1).
Equivalently: A(x^2) = Sum_{n = -oo..+oo} x^(4*n^2 + 2*n)/(1 + x^(2*n+1))^(2*n+1).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(4*n+2)
More generally, for k = 1,2,3,..., a((2^k)*(2*n + 1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(2^(k+1)*(2*n+1)).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2*n).
More generally, for k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2^(k+1)*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2^(k+1)*n).
a(4*n+2) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 + x^n)^(2*n) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 - x^n)^(2*n).
a(n) = [x^(2*n)] Sum_{n = -oo..+oo} (-1)^n*x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2*n+1).
For k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2^(k+1)*(2*n+1)).
(End)
EXAMPLE
G.f.: A(x) = 1 + 2*x^2 + x^4 + 5*x^6 + x^8 + 6*x^10 + 8*x^12 + 8*x^14 + x^16 + 25*x^18 + 12*x^20 +...
where 2*A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 +...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 +...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n +...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n +...
MATHEMATICA
terms = 100; max = 2 terms; 1/2 Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
PROG
(PARI) {a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k/2 + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k /2 + O(x^(2*n+2)) ); polcoeff(A, 2*n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k))/2 + O(x^(n+1)) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = sum(k=-n-1, n+1, x^k*(1+x^k)^(2*k) + O(x^(n+1)) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = sum(k=-n-1, n+1, x^(2*k^2-k)/(1-x^k + O(x^(n+1)))^(2*k) ); polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A249548 A014650 A014648 * A263454 A036073 A124227
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jul 17 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)