OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q)^2 * eta(q^4) * eta(q^8)^2 / eta(q^2)^5)^2 in powers of q.
Euler transform of period 8 sequence [ -4, 6, -4, 4, -4, 6, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A210067.
G.f.: x * Product_{k>0} ( 1 + x^(2*k))^6 * (1 + x^(4*k))^4 / (1 + x^k)^4.
a(n) ~ -(-1)^n * exp(sqrt(2*n)*Pi) / (64 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 17 2017
EXAMPLE
G.f. = x - 4*x^2 + 12*x^3 - 32*x^4 + 78*x^5 - 176*x^6 + 376*x^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q^2]^2 / EllipticTheta[ 3, 0, q]^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A) * eta(x^8 + A)^2 / eta(x^2 + A)^5)^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 17 2015
STATUS
approved