login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260142
Denominators of the distinct common values of sigma(n)/n and m/phi(m) in the order which they occur when n and m increase.
1
1, 2, 1, 3, 8, 4, 2, 6, 1, 24, 36, 10, 128, 12, 4, 32, 16, 12, 42, 16, 72, 384, 120, 144, 2, 24, 64, 864, 36, 216, 60, 160, 504, 192, 16, 288, 54, 6, 128, 24, 144, 1920, 4, 32768, 32, 32, 216, 432, 8192, 20, 48, 1296, 1080, 1760, 4320, 384, 704, 1728, 10, 360, 4, 2816, 80
OFFSET
1,2
COMMENTS
To be considered as common, a value must have appeared for some N in both sequences sigma(n)/n (A017665/A017666) and n/eulerphi(n) (A109395/A076512), with 1<=n<=N.
EXAMPLE
sigma(n)/n starts: 1/1, 3/2, 4/3, 7/4, 6/5, 2/1, 8/7, 15/8, 13/9, 9/5, ...
m/phi(m) starts: 1/1, 2/1, 3/2, 2/1, 5/4, 3/1, 7/6, 2/1, 3/2, 5/2, ...
The 1st common value is 1/1 = sigma(1)/1 = 1/eulerphi(1).
The 2nd common value is 3/2 = 3/eulerphi(3) = sigma(2)/2.
The 3rd common value is 2/1 = sigma(6)/6 = 2/eulerphi(2).
The sequence of ratios begin: 1, 3/2, 2, 7/3, 15/8, 7/4, 5/2, 13/6, 3, 65/24, 91/36, 31/10, 255/128, 31/12, ...
So this sequence begins 1, 2, 1, ...
PROG
(PARI) already(vsv, val, vsi, n) = {pos=vecsearch(vsv, val); if (pos, until(vsv[pos] < val, pos--); pos++; pos = vsi[pos] <= n); pos; }
lista(nn) = {vrat = [1]; vsrat = [1]; ve = vector(nn, k, k/eulerphi(k)); vs = vector(nn, k, sigma(k)/k); vesv = vecsort(ve); vesi = vecsort(ve, , 1); vssv = vecsort(vs); vssi = vecsort(vs, , 1); print1(1, ", "); for (n=2, nn, rn = vs[n]; if (!vecsearch(vsrat, rn) && (already(vesv, rn, vesi, n)), print1(denominator(rn), ", "); vrat = concat(vrat, rn); vsrat = vecsort(vrat, , 8), rn = ve[n]; if (!vecsearch(vsrat, rn) && (already(vssv, rn, vssi, n)), print1(denominator(rn), ", "); vrat = concat(vrat, rn); vsrat = vecsort(vrat, , 8); ); ); ); }
CROSSREFS
Cf. A259850, A260141 (numerators).
Sequence in context: A320875 A265891 A248354 * A194505 A137307 A256420
KEYWORD
nonn,frac
AUTHOR
Michel Marcus, Jul 17 2015
STATUS
approved