

A248354


Least positive integer m such that m + n divides prime(m^2) + prime(n^2).


1



1, 1, 2, 1, 3, 8, 2, 6, 6, 45, 9, 4, 15, 2, 13, 17, 4, 12, 9, 8, 11, 6, 101, 20, 2, 15, 7, 50, 4, 183, 48, 15, 9, 5, 4, 4, 157, 1, 123, 4, 13, 112, 76, 4, 7, 13, 44, 2, 16, 28, 83, 202, 114, 50, 85, 31, 14, 62, 19, 25
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Conjecture: a(n) exists for any n > 0. Moreover, a(n) <= n*(n1)/2 for all n > 1.


LINKS



EXAMPLE

a(3) = 2 since 2 + 3 = 5 divides prime(2^2) + prime(3^2) = 7 + 23 = 30.


MATHEMATICA

Do[m = 1; Label[aa]; If[Mod[Prime[m^2] + Prime[n^2], m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]


PROG



CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



