Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 05 2014 20:55:37
%S 1,1,2,1,3,8,2,6,6,45,9,4,15,2,13,17,4,12,9,8,11,6,101,20,2,15,7,50,4,
%T 183,48,15,9,5,4,4,157,1,123,4,13,112,76,4,7,13,44,2,16,28,83,202,114,
%U 50,85,31,14,62,19,25
%N Least positive integer m such that m + n divides prime(m^2) + prime(n^2).
%C Conjecture: a(n) exists for any n > 0. Moreover, a(n) <= n*(n-1)/2 for all n > 1.
%C See also the comments in A248052.
%H Zhi-Wei Sun, <a href="/A248354/b248354.txt">Table of n, a(n) for n = 1..10000</a>
%e a(3) = 2 since 2 + 3 = 5 divides prime(2^2) + prime(3^2) = 7 + 23 = 30.
%t Do[m = 1; Label[aa]; If[Mod[Prime[m^2] + Prime[n^2], m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
%o (PARI) a(n)=my(N=prime(n^2),m); while((prime(m++^2)+N)%(m+n), ); m \\ _Charles R Greathouse IV_, Oct 05 2014
%Y Cf. A000040, A000290, A011757, A247824, A247975, A248052.
%K nonn
%O 1,3
%A _Zhi-Wei Sun_, Oct 05 2014