The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076512 Denominator of cototient(n)/totient(n). 19
 1, 1, 2, 1, 4, 1, 6, 1, 2, 2, 10, 1, 12, 3, 8, 1, 16, 1, 18, 2, 4, 5, 22, 1, 4, 6, 2, 3, 28, 4, 30, 1, 20, 8, 24, 1, 36, 9, 8, 2, 40, 2, 42, 5, 8, 11, 46, 1, 6, 2, 32, 6, 52, 1, 8, 3, 12, 14, 58, 4, 60, 15, 4, 1, 48, 10, 66, 8, 44, 12, 70, 1, 72, 18, 8, 9, 60, 4, 78, 2, 2, 20, 82, 2, 64, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n)=1 iff n=A007694(k) for some k. Numerator of phi(n)/n=Prod_{p|n} (1-1/p). - Franz Vrabec, Aug 26 2005 From Wolfdieter Lang, May 12 2011: (Start) For n>=2, a(n)/A109395(n) = sum(((-1)^r)*sigma_r,r=0..M(n)) with the elementary symmetric functions (polynomials) sigma_r of the indeterminates {1/p_1,...,1/p_M(n)} if n = prod((p_j)^e(j),j=1..M(n)) where M(n)=A001221(n) and sigma_0=1. This follows by expanding the above given product for phi(n)/n. The n-th member of this rational sequence 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5,... is also (2/n^2)*sum(k,with 1<=k=2. Therefore, this scaled sum depends only on the distinct prime factors of n. See also A023896. Proof via PIE (principle of inclusion and exclusion). (End) In the sequence of rationals r(n)=eulerphi(n)/n: 1, 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5, 10/11, 1/3, ... one can observe that new values are obtained for squarefree indices (A005117); while for a nonsquarefree number n (A013929), r(n) = r(A007947(n)), where A007947(n) is the squarefree kernel of n. - Michel Marcus, Jul 04 2015 LINKS T. D. Noe, Table of n, a(n) for n=1..1000 FORMULA a(n) = A000010(n)/A009195(n). MATHEMATICA Table[Denominator[(n - EulerPhi[n])/EulerPhi[n]], {n, 80}] (* Alonso del Arte, May 12 2011 *) PROG (PARI) vector(80, n, numerator(eulerphi(n)/n)) \\ Michel Marcus, Jul 04 2015 (Magma) [Numerator(EulerPhi(n)/n): n in [1..100]]; // Vincenzo Librandi, Jul 04 2015 CROSSREFS Cf. A076511 (numerator of cototient(n)/totient(n)), A051953. Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35). Sequence in context: A063994 A268336 A295127 * A128707 A257022 A214721 Adjacent sequences: A076509 A076510 A076511 * A076513 A076514 A076515 KEYWORD nonn,frac AUTHOR Reinhard Zumkeller, Oct 15 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 10:17 EST 2023. Contains 367560 sequences. (Running on oeis4.)