login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014650
Number of partitions of n into its divisors that are powers of primes (A000961) with at least one part of size 1.
3
1, 1, 1, 2, 1, 5, 1, 6, 3, 8, 1, 27, 1, 11, 11, 26, 1, 43, 1, 63, 15, 17, 1, 215, 5, 20, 18, 114, 1, 226, 1, 166, 23, 26, 23, 734, 1, 29, 27, 728, 1, 422, 1, 261, 181, 35, 1, 2697, 7, 179, 35, 357, 1, 791, 35, 1729, 39, 44, 1, 6747, 1, 47, 325, 1626, 41, 996, 1, 594, 47, 1062, 1, 20345, 1, 56, 327, 735, 47, 1374, 1, 13485, 216, 62, 1
OFFSET
1,4
LINKS
David A. Corneth, PARI program
PROG
(PARI)
\\ This is for computing a small number of terms:
primepower_divisors_with1_reversed(n) = vecsort(select(d -> ((1==d) || isprimepower(d)), divisors(n)), , 4);
partitions_into_with_trailing_ones(n, parts, from=1) = if(!n, 1, if(#parts<=(from+1), if(#parts == from, 1, (1+(n\parts[from]))), my(s=0); for(i=from, #parts, if(parts[i]<=n, s += partitions_into_with_trailing_ones(n-parts[i], parts, i))); (s)));
A014650(n) = partitions_into_with_trailing_ones(n-1, primepower_divisors_with1_reversed(n)); \\ Antti Karttunen, Sep 10 2018
(PARI) \\ For an efficient program to compute large numbers of terms, see David A. Corneth's PARI program included in the Links-section. - Antti Karttunen, Sep 12 2018
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from and the name clarified by Antti Karttunen, Sep 10 2018
STATUS
approved