The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347464 Number of even-length ordered factorizations of n^2 into factors > 1 with alternating product 1. 9
 1, 1, 1, 2, 1, 5, 1, 6, 2, 5, 1, 26, 1, 5, 5, 20, 1, 26, 1, 26, 5, 5, 1, 134, 2, 5, 6, 26, 1, 73, 1, 70, 5, 5, 5, 230, 1, 5, 5, 134, 1, 73, 1, 26, 26, 5, 1, 670, 2, 26, 5, 26, 1, 134, 5, 134, 5, 5, 1, 686, 1, 5, 26, 252, 5, 73, 1, 26, 5, 73, 1, 1714, 1, 5, 26 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS An ordered factorization of n is a sequence of positive integers > 1 with product n. We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). Also the number of ordered pairs of ordered factorizations of n, both of the same length. Note that the version for all n (not just squares) is 0 except at perfect squares. LINKS EXAMPLE The a(12) = 26 ordered factorizations:   (2*2*6*6)      (3*2*4*6)      (6*2*2*6)  (4*2*3*6)  (12*12)   (2*3*6*4)      (3*3*4*4)      (6*3*2*4)  (4*3*3*4)   (2*4*6*3)      (3*4*4*3)      (6*4*2*3)  (4*4*3*3)   (2*6*6*2)      (3*6*4*2)      (6*6*2*2)  (4*6*3*2)   (2*2*2*2*3*3)  (3*2*2*2*2*3)   (2*2*2*3*3*2)  (3*2*2*3*2*2)   (2*2*3*2*2*3)  (3*3*2*2*2*2)   (2*2*3*3*2*2)   (2*3*2*2*3*2)   (2*3*3*2*2*2) For example, the ordered factorization 6*3*2*4 = 144 has alternating product 6/3*2/4 = 1, so is counted under a(12). MATHEMATICA facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}]; Table[Length[Select[Join@@Permutations/@facs[n^2], EvenQ[Length[#]]&&altprod[#]==1&]], {n, 100}] PROG (PARI) A347464aux(n, k=0, t=1) = if(1==n, (0==k)&&(1==t), my(s=0); fordiv(n, d, if((d>1), s += A347464aux(n/d, 1-k, t*(d^((-1)^k))))); (s)); A347464(n) = A347464aux(n^2); \\ Antti Karttunen, Oct 30 2021 CROSSREFS Positions of 1's are A008578 (1 and A000040). The restriction to powers of 2 is A000984. Positions of 2's are A001248. The not necessarily even-length version is A273013. A000290 lists squares, complement A000037. A001055 counts factorizations. A027187 counts even-length partitions. A074206 counts ordered factorizations. A119620 counts partitions with alternating product 1, ranked by A028982. A339846 counts even-length factorizations, ordered A347706. A347438 counts factorizations with alternating product 1. A347457 ranks partitions with integer alternating product. A347460 counts possible alternating products of factorizations. A347466 counts factorizations of n^2. Cf. A062312, A339890, A347437, A347439, A347440, A347442, A347456, A347459, A347463, A347705. Sequence in context: A090080 A151737 A211361 * A249548 A014650 A014648 Adjacent sequences:  A347461 A347462 A347463 * A347465 A347466 A347467 KEYWORD nonn AUTHOR Gus Wiseman, Sep 23 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 19:45 EST 2022. Contains 350504 sequences. (Running on oeis4.)