OFFSET
1,4
COMMENTS
An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
Also the number of ordered pairs of ordered factorizations of n, both of the same length.
Note that the version for all n (not just squares) is 0 except at perfect squares.
LINKS
EXAMPLE
The a(12) = 26 ordered factorizations:
(2*2*6*6) (3*2*4*6) (6*2*2*6) (4*2*3*6) (12*12)
(2*3*6*4) (3*3*4*4) (6*3*2*4) (4*3*3*4)
(2*4*6*3) (3*4*4*3) (6*4*2*3) (4*4*3*3)
(2*6*6*2) (3*6*4*2) (6*6*2*2) (4*6*3*2)
(2*2*2*2*3*3) (3*2*2*2*2*3)
(2*2*2*3*3*2) (3*2*2*3*2*2)
(2*2*3*2*2*3) (3*3*2*2*2*2)
(2*2*3*3*2*2)
(2*3*2*2*3*2)
(2*3*3*2*2*2)
For example, the ordered factorization 6*3*2*4 = 144 has alternating product 6/3*2/4 = 1, so is counted under a(12).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[Join@@Permutations/@facs[n^2], EvenQ[Length[#]]&&altprod[#]==1&]], {n, 100}]
PROG
(PARI)
A347464aux(n, k=0, t=1) = if(1==n, (0==k)&&(1==t), my(s=0); fordiv(n, d, if((d>1), s += A347464aux(n/d, 1-k, t*(d^((-1)^k))))); (s));
A347464(n) = A347464aux(n^2); \\ Antti Karttunen, Oct 30 2021
CROSSREFS
The restriction to powers of 2 is A000984.
Positions of 2's are A001248.
The not necessarily even-length version is A273013.
A001055 counts factorizations.
A027187 counts even-length partitions.
A074206 counts ordered factorizations.
A347438 counts factorizations with alternating product 1.
A347457 ranks partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347466 counts factorizations of n^2.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 23 2021
STATUS
approved