login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363559
Expansion of g.f. A(x) = Sum_{n=-oo..+oo} x^n * (3 + x^n)^(2*n).
6
1, 10, 81, 757, 6561, 59454, 531496, 4788072, 43046721, 387480753, 3486784492, 31381709148, 282429556893, 2541872737062, 22876792457796, 205891204134565, 1853020188851841, 16677182431460826, 150094635300957591, 1350851725033981380, 12157665459056934471
OFFSET
0,2
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds as a formal power series for all y.
LINKS
FORMULA
The g.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1.a) A(x) = Sum_{n=-oo..+oo} x^n * (3 + x^n)^(2*n).
(1.b) A(x) = Sum_{n=-oo..+oo} x^n * (3 - x^n)^(2*n).
(2.a) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - 3*x^n)^(2*n).
(2.b) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + 3*x^n)^(2*n).
(3.a) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (3 + x^n)^n.
(3.b) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (-3 + x^n)^n.
(4.a) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + 3*x^n)^n.
(4.b) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - 3*x^n)^n.
From Paul D. Hanna, Aug 06 2023: (Start)
The following generating functions are extensions of Peter Bala's formulas given in A260147.
(5.a) A(x^2) = Sum_{n=-oo..+oo} x^(2*n+1) * (3 + x^(2*n+1))^(2*n+1).
(5.b) A(x^2) = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + 3*x^(2*n+1))^(2*n+1).
(End)
a(2^n) = 9^(2^n) for n > 0 (conjecture).
a(p) = p*3^(p-1) + 9^p for primes p > 3 (conjecture).
EXAMPLE
G.f.: A(x) = 1 + 10*x + 81*x^2 + 757*x^3 + 6561*x^4 + 59454*x^5 + 531496*x^6 + 4788072*x^7 + 43046721*x^8 + 387480753*x^9 + ...
PROG
(PARI) {a(n) = my(A); A = sum(m=-n-1, n+1, x^m * (3 + x^m +x*O(x^n))^(2*m) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 01 2023
STATUS
approved