OFFSET
0,4
COMMENTS
Related identities:
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * B(x)^n / Product_{k=1..n+1} (1 - x^k*B(x)), where B(x) = 1/(1-x).
(2) 1 = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) / Product_{k=1..n+1} (1 - x^k).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..500
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).
(2) 1/(A(x) - x) = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 47*x^7 + 112*x^8 + 273*x^9 + 677*x^10 + 1702*x^11 + 4330*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=0, 2*sqrtint(#A), (-1)^m * (x)^(m*(m-1)/2) * Ser(A)^m / prod(k=1, m+1, (1 - x^k +x*O(x^#A) ) )), #A-1); ); A[n+1]}
for(n=0, 32, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 11 2023
STATUS
approved