login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363557
Expansion of g.f. A(x) satisfying 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).
1
1, 1, 1, 2, 4, 9, 20, 47, 112, 273, 677, 1702, 4330, 11128, 28847, 75341, 198066, 523713, 1391869, 3716098, 9962252, 26806275, 72372721, 195994320, 532266707, 1449216287, 3955193019, 10818202369, 29650108510, 81417795070, 223964216673, 617097850848, 1702943168118
OFFSET
0,4
COMMENTS
Related identities:
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * B(x)^n / Product_{k=1..n+1} (1 - x^k*B(x)), where B(x) = 1/(1-x).
(2) 1 = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) / Product_{k=1..n+1} (1 - x^k).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).
(2) 1/(A(x) - x) = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * A(x)^n / Product_{k=1..n+1} (1 - x^k).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 47*x^7 + 112*x^8 + 273*x^9 + 677*x^10 + 1702*x^11 + 4330*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=0, 2*sqrtint(#A), (-1)^m * (x)^(m*(m-1)/2) * Ser(A)^m / prod(k=1, m+1, (1 - x^k +x*O(x^#A) ) )), #A-1); ); A[n+1]}
for(n=0, 32, print1(a(n), ", "))
CROSSREFS
Sequence in context: A003018 A196244 A035084 * A213905 A058385 A058386
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 11 2023
STATUS
approved