login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058386
Essentially series series-parallel networks with n unlabeled edges, multiple edges not allowed.
2
0, 0, 1, 1, 2, 4, 9, 20, 47, 112, 274, 678, 1709, 4346, 11176, 28966, 75656, 198814, 525496, 1395758, 3723986, 9975314, 26817655, 72332320, 195679137, 530814386, 1443556739, 3934880554, 10748839215, 29420919456, 80678144437, 221618678694
OFFSET
0,5
LINKS
Steven R. Finch, Series-parallel networks.
Steven R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
John W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226 (the sequence r_n).
FORMULA
G.f. satisfies A(x) = A058385(x) - x + x^2.
MATHEMATICA
(* f = g.f. of A058385 *) max = 31; f[x_] := Sum[b[n]*x^n, {n, 0, max}]; b[0] = 0; b[1] = 1; b[2] = 0; b[3] = 1; coef = CoefficientList[ Series[1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-b[j]), {j, 1, max}], {x, 0, max}], x][[ 5 ;; All]]; g[x_] := Sum[a[n]*x^n, {n, 0, max}]; a[0] = a[1] = 0; a[2] = a[3] = 1; coeg = CoefficientList[ Series[g[x] - f[x] + x - x^2, {x, 0, max}], x][[ 5 ;; All]]; solf = SolveAlways[ Thread[coef == 0], x] ; solg = SolveAlways[ Thread[coeg == 0] /. solf[[1]], x]; Table[a[n], {n, 0, max}] /. solg[[1]] (* Jean-François Alcover, Jul 18 2012 *)
terms = 32; (* f = g.f. of A058385 *) f[_] = 0; Do[f[x_] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[f[x], x, j]]), {j, 1, terms}]) + O[x]^ terms // Normal, 4*terms]; A[x_] = f[x] - x + x^2 + O[x]^terms; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 10 2018 *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Dec 20 2000
STATUS
approved