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Series and parallel connections are usually first encountered in the study of elec-

trical circuits. Our approach is to first examine a relevant class of partially ordered

sets (posets) and then to define series-parallel networks by analogy [1]. Interesting

asymptotic constants appear everywhere, similar to those associated with counting

various species of trees [2]. We also talk briefly about the enumeration of Boolean

(or switching) functions under different notions of equivalence.

0.1. Series-Parallel Posets. We introduce two procedures for combining two

posets (≤) and (0≤) to obtain a new poset, assuming that  ∩ 0 = ∅:

• the disjoint sum  ⊕ 0 is the poset on  ∪ 0 such that  ≤  in  ⊕ 0 if
either   ∈  and  ≤  in , or   ∈ 0 and  ≤  in 0

• the linear product  ¯ 0 is the poset on  ∪ 0 such that  ≤  in  ¯ 0 if
  ∈  and  ≤  in , or   ∈ 0 and  ≤  in 0, or  ∈  and  ∈ 0.

Clearly ⊕ is commutative but ¯ is not. A series-parallel poset is one that can be
recursively constructed by applying the operations of disjoint sum and linear product,

starting with a single point [3].

Define a poset to be N-free if there is no subset {   } whose only nontrivial
relations are given by

        

It can be proved that a finite poset is series-parallel if and only if it is N-free [4, 5, 6].

Hence there are 15 series-parallel posets with 4 points (see the 16 posets in Figure 2

of [7] and eliminate the poset that looks like an “N”).

There are two cases we shall consider. The number  of unlabeled series-parallel

posets with  points has (ordinary) generating function [3, 8, 9, 10]
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which satisfies the functional equation
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Alternatively, if the sequence {̂} is defined by 1 () =
P∞

=0 ̂
, then
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where  = 1 when  =  and  = 0 otherwise. Using such properties, it follows

that
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The number  of labeled series-parallel posets with  points has (exponential)

generating function [1, 3, 8, 10]
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where the notation  ()h−1i denotes the reversion of the power series  (). Well-
established theory [11, 12] gives that

 ∼  · ! · −32 · −

where  = ln()− 2+ 3 = 02451438475 and

 =

s


2
√
5(2− )

= 02137301074

Now let us define an equivalence relation on the set of series-parallel posets with 

points, induced simply by declaring ¯0 and 0¯ to be equivalent. (See Figure 1.)
The equivalence classes correspond to what are called two-terminal series-parallel

networks with  edges [13, 14, 15, 16, 17, 18, 19], with the understanding that
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Figure 1: There are 10 non-equivalent (unlabeled) series-parallel posets with 4 points.

Note the analogy with Figure 2.

• points of a poset are mapped in a one-to-one manner to edges of the corre-
sponding network

• two points of the poset are comparable if and only if the analogous edges of the
network are connected in series

• two points of the poset are incomparable if and only if the analogous edges of
the network are connected in parallel.

(See Figures 2 and 3.) The leftmost and rightmost points are the terminals (two

distinguished points playing a role similar to that of the root of a rooted tree). A

network, however, is not necessarily a graph since it may possess multiple parallel

edges. Observe that an interchange of parts of the network, either in series or in par-

allel, is immaterial. In other words, when we count series-parallel networks, our tally

is unaffected by a permutation of variables in the indicated Boolean representations.

0.2. Series-Parallel Networks. The number  of unlabeled series-parallel net-

works with  edges has generating function [20]
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which satisfies the functional equation
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Figure 2: There are 10 unlabeled series-parallel networks with 4 edges, that is, 4 =

10. The “essentially parallel” networks constitute the first row and the “essentially

series” networks constitute the second row.

Figure 3: There are 8 labeled series-parallel networks with 3 edges, that is, 3 = 8.

The “essentially parallel” networks constitute the first row and the “essentially series”

networks constitute the second row.
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Alternatively, we have
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Using these properties, it follows that [15, 21, 22, 23]
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where  = 02808326669 = (35608393095)−1 is the unique positive root of
() = 2 and
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This also gives the number of non-equivalent Boolean functions of  variables, built

only with + (disjunction) and · (conjunction).
The number  of labeled series-parallel networks with  edges has generating

function [1, 24]
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By techniques similar to those used to analyze {}, we have [21, 25]

 ∼  · ! · −32 · −

where  = 2 ln(2)− 1 = 03862943611 = (25886994495)−1 and

 =

r



= 03506584008 = 2 · (01753292004)

Related work involves bracketing of -symbol products [26] and phylogenetic trees

[27].

0.3. Series-Parallel NetworksWithout Multiple Parallel Edges. If we pro-

hibit multiple parallel edges, so that the networks under consideration are all graphs,

different constants arise. (See Figure 4).
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Figure 4: There are 8 unlabeled series-parallel networks with 5 edges that obey the

prohibition against multiple parallel edges, that is, 5 = 8. The “essentially parallel”

networks constitute the first row and the “essentially series” networks constitute the

second row.

The number  of such unlabeled series-parallel networks with  edges has gener-

ating function [28]
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which satisfies the functional equation
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Using these properties, it follows that [21]
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The number  of such labeled series-parallel networks with  edges has generating

function [29]
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Proceeding as before, we have [21]

 ∼  · ! · −32 · −

where  = 4− 1 = 04715177646 and

 =
1
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= 03193679560 = 2 · (01596839780)

It follows that the probability that a random -edge series-parallel network has

no multiple parallel edges is asymptotically³


´µ


¶

= (09557648142)(08109908278)

if the network is unlabeled and³


´³


´
= (09107665899)(08192572794)

if the network is labeled. We hope to report on later on other relevant material in

[21].

0.4. Boolean Functions. We have already enumerated the number  of distinct

Boolean functions of  variables, built only with + and ·, under the action of the
symmetric group .

Of course, the set of all Boolean functions also includes those involving comple-

mentation of variables (¬). Let us examine briefly this larger set [30, 31]. Define
two Boolean functions to be equivalent if they are identical up to a bijective renam-

ing of the variables. The number of equivalence classes in this case is asymptotically

[32, 33, 34]

22


!
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hence no new constants arise. Define two Boolean functions to be congruent if they

are identical up to a bijective renaming of the variables and an additional complemen-

tation of some of the variables. The number of congruence classes is asymptotically

22
−!

Other results of this kind are also known, but none contain new constants.

Let us return to our original set of Boolean functions of  variables and let F2
denote the binary field.  is a subgroup of the group  of invertible linear transfor-

mations F2 → F2 , namely, the × matrices that have exactly one 1 in each row and

each column. What can be said about the number ̃ of distinct Boolean functions,

built only with + and ·, under the action of the (larger) group ? Our experience

with  leads us to conjecture that the asymptotics of ̃ will be quite interesting.

0.5. Irreducible Posets. Another unsolved problem involves the number  of

unlabeled (⊕,¯)-irreducible posets with  points. Such a poset cannot be written as
a disjoint union or a linear product of two non-empty posets. It is known that

() =

∞X
=0


 = +4+125+1046+9567+100378+1265789+197100510+· · ·

and, further, that

 () = exp
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where

 () =

∞X
=0


 = 1+ +22+53+164+635+3186+20457+169998+ · · ·

is the generating function of (arbitrary) unlabeled posets [3, 7, 10]. What can be said

about the asymptotics of ? Even a nice functional equation for() in-and-by-itself

is probably impossible.

0.6. Addendum. Bodirsky, Giménez, Kang & Noy [35, 36] recently determined

that the number of labeled series-parallel graphs on  vertices is asymptotically

(00076388)−52(01102133)−!

as  → ∞, but formulas underlying the constants are too elaborate to reproduce
here. Special cases of such planar graphs [37] — connected and 2-connected — give

rise to

(00067912)−52(01102133)−!
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(00010131)−52(01280038)−!

respectively. The distribution of the number of edges in a random graph with 

vertices is asymptotically normal and the distribution of the number of connected

components (minus one) is asymptotically Poisson, both with explicit computable

parameters.
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