login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095980
Number of UFU-free Motzkin paths of length n.
1
1, 1, 2, 4, 9, 20, 47, 112, 274, 679, 1708, 4341, 11143, 28831, 75135, 197013, 519447, 1376256, 3662327, 9784106, 26232033, 70558313, 190348160, 514904151, 1396328313, 3795324358, 10338000693, 28215285901, 77149545999, 211314835549, 579730469034
OFFSET
0,3
COMMENTS
a(n) = number of Motzkin paths (A001006) of length n that contain no consecutive UFU.
LINKS
Jean-Luc Baril and José Luis Ramírez, Partial Motzkin paths with air pockets of the first kind avoiding peaks, valleys or double rises, arXiv:2301.10449 [math.CO], 2023.
FORMULA
G.f.: (1 - x - x^3 - (1 - 2*x - 3*x^2 + 2*x^3 - 2*x^4 + x^6)^(1/2))/(2*x^2*(1 - x + x^2)).
EXAMPLE
a(5) = 20 because, of the 21 Motzkin paths of length 5, only UFUDD contains an occurrence of UFU.
MATHEMATICA
CoefficientList[Series[(1 - x - x^3 - (1 - 2*x - 3*x^2 + 2*x^3 - 2*x^4 + x^6)^(1/2))/(2*x^2*(1 - x + x^2)), {x, 0, 30}], x] (* Michael De Vlieger, Jan 31 2023 *)
PROG
(PARI) seq(n)={Vec((1 - x - x^3 - (1 - 2*x - 3*x^2 + 2*x^3 - 2*x^4 + x^6 + O(x^3*x^n))^(1/2))/(2*x^2*(1 - x + x^2)))} \\ Andrew Howroyd, Nov 05 2019
CROSSREFS
Cf. A001006.
Sequence in context: A213905 A058385 A058386 * A036619 A036620 A036721
KEYWORD
nonn
AUTHOR
David Callan, Jul 16 2004
EXTENSIONS
Terms a(23) and beyond from Andrew Howroyd, Nov 05 2019
STATUS
approved