Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 04 2023 23:38:35
%S 0,0,1,1,2,4,9,20,47,112,274,678,1709,4346,11176,28966,75656,198814,
%T 525496,1395758,3723986,9975314,26817655,72332320,195679137,530814386,
%U 1443556739,3934880554,10748839215,29420919456,80678144437,221618678694
%N Essentially series series-parallel networks with n unlabeled edges, multiple edges not allowed.
%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Series-parallel networks</a>.
%H S. R. Finch, <a href="/A000084/a000084_2.pdf">Series-parallel networks</a>, July 7, 2003. [Cached copy, with permission of the author]
%H J. W. Moon, <a href="http://dx.doi.org/10.1016/S0304-0208(08)73057-3">Some enumerative results on series-parallel networks</a>, Annals Discrete Math., 33 (1987), 199-226 (the sequence r_n).
%H <a href="/index/Mo#Moon87">Index entries for sequences mentioned in Moon (1987)</a>
%F G.f. satisfies A(x) = A058385(x) - x + x^2.
%t (* f = g.f. of A058385 *) max = 31; f[x_] := Sum[b[n]*x^n, {n, 0, max}]; b[0] = 0; b[1] = 1; b[2] = 0; b[3] = 1; coef = CoefficientList[ Series[1 - x + x^2 + 2*f[x] - Product[(1 - x^j)^(-b[j]), {j, 1, max}], {x, 0, max}], x][[ 5 ;; All]]; g[x_] := Sum[a[n]*x^n, {n, 0, max}]; a[0] = a[1] = 0; a[2] = a[3] = 1; coeg = CoefficientList[ Series[g[x] - f[x] + x - x^2, {x, 0, max}], x][[ 5 ;; All]]; solf = SolveAlways[ Thread[coef == 0], x] ; solg = SolveAlways[ Thread[coeg == 0] /. solf[[1]], x]; Table[a[n], {n, 0, max}] /. solg[[1]] (* _Jean-François Alcover_, Jul 18 2012 *)
%t terms = 32; (* f = g.f. of A058385 *) f[_] = 0; Do[f[x_] = (1/2)*(-1 + x - x^2 + Product[(1 - x^j)^(-Ceiling[Coefficient[f[x], x, j]]), {j, 1, terms}]) + O[x]^ terms // Normal, 4*terms]; A[x_] = f[x] - x + x^2 + O[x]^terms; CoefficientList[A[x], x] (* _Jean-François Alcover_, Jan 10 2018 *)
%Y Cf. A058379, A058385, A058387.
%K nonn,easy,nice
%O 0,5
%A _N. J. A. Sloane_, Dec 20 2000