login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058383
Primes of form 1+(2^a)*(3^b), a>0, b>0.
20
7, 13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993
OFFSET
1,1
COMMENTS
Prime numbers n such that cos(2*Pi/n) is an algebraic number of a 3-smooth degree, but not a 2-smooth degree. - Artur Jasinski, Dec 13 2006
From Antonio M. Oller-Marcén, Sep 24 2009: (Start)
In this case gcd(a,b) is a power of 2.
A regular polygon of n sides is constructible by paper folding if and only if n=2^r3^sp_1...p_t with p_i being distinct primes of this kind. (End)
Primes in A005109 but not in A092506. - R. J. Mathar, Sep 28 2012
Conjecture: these are the only solutions >=7 to the equation A000010(x) + A000010(x-1) = floor((4*x-3)/3). - Benoit Cloitre, Mar 02 2018
These are also called Pierpont primes. - Harvey P. Dale, Apr 13 2019
LINKS
Ray Chandler, Table of n, a(n) for n = 1..8378 (terms < 10^1000, first 1000 terms from T. D. Noe)
FORMULA
Primes of the form 1 + A033845(n).
MAPLE
N:= 10^10: # to get all terms <= N+1
sort(select(isprime, [seq(seq(1+2^a*3^b, a=1..ilog2(N/3^b)), b=1..floor(log[3](N)))])); # Robert Israel, Mar 02 2018
MATHEMATICA
Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]], 1] == {3} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] (* Artur Jasinski, Dec 13 2006 *)
mx = 1500000; s = Sort@ Flatten@ Table[1 + 2^j*3^k, {j, Log[2, mx]}, {k, Log[3, mx/2^j]}]; Select[s, PrimeQ] (* Robert G. Wilson v, Sep 28 2012 *)
Select[Prime[Range[114000]], FactorInteger[#-1][[All, 1]]=={2, 3}&] (* Harvey P. Dale, Apr 13 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 20 2000
STATUS
approved