login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266268
Numbers n such that phi(n) = 3*phi(n-1).
3
7, 13, 19, 37, 73, 91, 97, 109, 163, 193, 433, 487, 577, 703, 769, 793, 925, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 4699, 5551, 6697, 7999, 8701, 10369, 10591, 11803, 12289, 16471, 17497, 18433, 33251, 39367, 52489, 56791, 79249, 124357, 127927, 137899
OFFSET
1,1
COMMENTS
Prime terms are in A058383.
See A266276(n) = the smallest numbers k such that phi(k) = n * phi(k-1) for n >=1: 2, 3, 7, 1261, 11242771, ...
Number of terms < 10^k: 1, 7, 17, 29, 41, 86, 205, 446, 1001, 2295, ..., . - Robert G. Wilson v, Jan 24 2016
All terms are == +-1 (mod 6) but mostly 1 (> 95%). - Robert G. Wilson v, Jan 24 2016
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..2467 (first 405 terms from G. C. Greubel)
FORMULA
a(n) = A067143(n) + 1.
EXAMPLE
19 is in the sequence because phi(19) = 18 = 3*phi(18) = 3*6.
MATHEMATICA
Select[Range[5000], EulerPhi[ # ]==3*EulerPhi[ #-1]&] (* G. C. Greubel, Dec 26 2015 *)
PROG
(Magma) [n: n in [2..2*10^5] | EulerPhi(n) eq 3*EulerPhi(n-1)]; // Vincenzo Librandi, Dec 26 2015
(PARI) isok(n) = eulerphi(n) == 3*eulerphi(n-1); \\ Michel Marcus, Dec 27 2015
(PARI) lista(nn) = for(n=1, nn, if(eulerphi(n) == 3*eulerphi(n-1), print1(n, ", "))); \\ Altug Alkan, Jan 24 2016
CROSSREFS
Cf. A000010, A058383, A171271 (numbers n such that phi(n) = 2*phi(n-1)), A266276.
Sequence in context: A059643 A040034 A176229 * A110074 A058383 A005471
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 26 2015
STATUS
approved