login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171271
Numbers n such that phi(n)=2*phi(n-1).
11
3, 5, 17, 155, 257, 287, 365, 805, 1067, 2147, 3383, 4551, 6107, 7701, 8177, 9269, 11285, 12557, 12971, 16403, 19229, 19277, 20273, 25133, 26405, 27347, 29155, 29575, 35645, 36419, 38369, 39647, 40495, 47215, 52235, 54653, 65537, 84863
OFFSET
1,1
COMMENTS
Theorem: A prime p is in the sequence iff p is a Fermat prime.
Proof: If p=2^2^n+1 is prime (Fermat prime) then phi(p)=2^2^n=2* phi(2^2^n)=2*phi(p-1), so p is in the sequence. Now if p is a prime term of the sequence then phi(p)=2*phi(p-1) so p-1=2*phi(p-1) and we deduce that p-1=2^m hence p is a Fermat prime.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 5416 terms from Hiroaki Yamanouchi)
FORMULA
a(n) = A050472(n) + 1. - Ray Chandler, May 01 2015
MATHEMATICA
Select[Range[85000], EulerPhi[ # ]==2EulerPhi[ #-1]&]
Flatten[Position[Partition[EulerPhi[Range[90000]], 2, 1], _?(2#[[1]] == #[[2]]&), 1, Heads->False]]+1 (* Harvey P. Dale, Sep 09 2017 *)
PROG
(Magma) [n: n in [2..2*10^5] | EulerPhi(n) eq 2*EulerPhi(n-1)]; // Vincenzo Librandi, May 17 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Farideh Firoozbakht, Feb 23 2010
STATUS
approved