login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107312
Primes p such that p + 2 and p^2 + 2^2 are primes.
1
3, 5, 17, 137, 347, 827, 2087, 2687, 3557, 3917, 4517, 4967, 5477, 5657, 5867, 6827, 7457, 7547, 7877, 8087, 8537, 8597, 10037, 10427, 10937, 12107, 12377, 13397, 13877, 16067, 17837, 17987, 19427, 19697, 20507, 20717, 20807, 22367, 22637
OFFSET
1,1
COMMENTS
Primes are lesser twins. Except a(1) and a(2), all a(n) == 7(mod 10).
LINKS
MAPLE
select(p -> isprime(p) and isprime(p+2) and isprime(p^2+4), [seq(2*i+1, i=1..10000)]); # Robert Israel, Aug 11 2014
MATHEMATICA
Select[Prime[Range[3000]], PrimeQ[ #+2]&&PrimeQ[ #^2+4]&]
PROG
(Magma) [p: p in PrimesUpTo(25000)| IsPrime(p+2) and IsPrime(p^2+4)] // Vincenzo Librandi, Jan 29 2011
(PARI) a(n)=isprime(n) && isprime(n+2) && isprime(n^2+4) \\ Edward Jiang, Aug 08 2014
CROSSREFS
Cf. A045637.
Sequence in context: A288376 A096178 A348430 * A083213 A171271 A056826
KEYWORD
nonn
AUTHOR
Zak Seidov, May 21 2005
STATUS
approved