login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107311
Decimal expansion of the solution to zeta(x) = 2.
21
1, 7, 2, 8, 6, 4, 7, 2, 3, 8, 9, 9, 8, 1, 8, 3, 6, 1, 8, 1, 3, 5, 1, 0, 3, 0, 1, 0, 2, 9, 7, 6, 9, 1, 4, 6, 4, 2, 3, 4, 1, 0, 9, 8, 4, 9, 3, 3, 5, 0, 3, 5, 7, 3, 2, 3, 2, 1, 2, 8, 5, 9, 0, 8, 4, 2, 3, 1, 7, 8, 5, 9, 6, 5, 3, 5, 7, 1, 0, 0, 8, 6, 7, 7, 2, 7, 4, 6, 0, 8, 1, 0, 8, 8, 9, 8, 2, 6, 4, 4, 0, 1
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's Composition Constant, p. 293.
LINKS
Einar Hille, A problem in "factorisatio numerorum", Acta Arithmetica, 2(1);134-144, 1936.
Hsien-Kuei Hwang, Distribution of the number of factors in random ordered factorizations of integers, Journal of Number Theory 81:1 (2000), pp. 61-92.
M. Klazar and F. Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, arXiv:math/0505352 [math.NT], 2005-2006.
EXAMPLE
zeta(1.72864723899818361813510301...) = 2.
MATHEMATICA
x /. FindRoot[ Zeta[x] == 2, {x, 2}, WorkingPrecision -> 102] // RealDigits // First (* Jean-François Alcover, Mar 19 2013 *)
PROG
(PARI) solve(X=1.5, 2, zeta(X)-2)
CROSSREFS
Sequence in context: A199046 A198564 A259072 * A363538 A048836 A198673
KEYWORD
nonn,cons
AUTHOR
Ralf Stephan, May 20 2005
STATUS
approved