The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259072 Decimal expansion of zeta'(-7) (the derivative of Riemann's zeta function at -7) (negated). 22
 0, 0, 0, 7, 2, 8, 6, 4, 2, 6, 8, 0, 1, 5, 9, 2, 4, 0, 6, 5, 2, 4, 6, 7, 2, 3, 3, 3, 5, 4, 6, 5, 0, 3, 6, 0, 6, 1, 1, 9, 0, 2, 8, 8, 7, 7, 2, 0, 9, 2, 5, 4, 1, 8, 3, 1, 8, 6, 3, 6, 3, 8, 6, 1, 5, 4, 1, 4, 2, 5, 9, 7, 5, 4, 5, 5, 2, 7, 3, 0, 9, 9, 1, 3, 0, 2, 3, 2, 4, 6, 4, 4, 1, 6, 8, 0, 4, 4, 9, 3, 7, 9, 6, 0, 6, 5, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Eric Weisstein's MathWorld, Riemann Zeta Function. Wikipedia, Riemann Zeta Function FORMULA zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant. zeta'(-7) =  -121/11200 - log(A(7)). Equals -121/11200 + (gamma + log(2*Pi))/240 - 315*Zeta'(8)/(8*Pi^8), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 25 2015 EXAMPLE -0.000728642680159240652467233354650360611902887720925418318636386154... MATHEMATICA Join[{0, 0, 0}, RealDigits[Zeta'[-7], 10, 104] // First] PROG (PARI) -zeta'(-7) \\ Charles R Greathouse IV, Dec 04 2016 CROSSREFS Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259073 (zeta'(-8)). Sequence in context: A249506 A199046 A198564 * A107311 A048836 A198673 Adjacent sequences:  A259069 A259070 A259071 * A259073 A259074 A259075 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 04:21 EDT 2020. Contains 333195 sequences. (Running on oeis4.)